Optimizing YOLOVS for Parking Space Detection: Comparative Analysis of
Custom Backbone Architectures

Apar Pokhrel

apar.pokhrel@mavs.uta.edu

Abstract

Parking space occupancy detection is a critical compo-
nent in the development of intelligent parking management
systems. Traditional object detection approaches, such as
YOLOVS, provide fast and accurate vehicle detection across
parking lots but can struggle with borderline cases, such
as partially visible vehicles, small vehicles (e.g., motorcy-
cles), and poor lighting conditions. In this work, we per-
form a comprehensive comparative analysis of customized
backbone architectures integrated with YOLOVS. Specifi-
cally, we evaluate various backbones — ResNet-18, VGG16,
EfficientNetV2, Ghost — on the PKLot dataset in terms of
detection accuracy and computational efficiency. Experi-
mental results highlight each architecture’s strengths and
trade-offs, providing insight into selecting suitable models
for parking occupancy.

1. Introduction

Urban parking shortages and inefficient use of parking
facilities are everyday challenges for drivers. Parking avail-
ability is a common challenge in urban environments, large
facilities, and university spaces. Traditional approaches
have largely focused on using object detection algorithms,
which aim to detect and localize vehicles in parking lot im-
ages or video feeds. Among these, YOLO (You Only Look
Once) [14] has emerged as a popular real-time detection
model, particularly with the introduction of YOLOVS.

Traditional methods relying solely on object detection
often struggle with fine-grained classification (e.g., distin-
guishing between “occupied,” “free,” or “partially occu-
pied” spots). However, in practical parking lot scenarios,
vehicles may only partially occupy a space, non-vehicle ob-
jects may trigger false detections, and small vehicles like
motorcycles can be easily missed. To address these limi-
tations, this paper explores the impact of integrating differ-
ent backbone architectures and head modifications into the
YOLOVS framework. By customizing the feature extraction
backbone and detection head, we aim to enhance detection

Gia Dao

gia.daoduyduc@mavs.uta.edu

robustness and generalization. This comparative analysis
provides valuable information on the strengths and trade-
offs of each configuration, guiding the selection of optimal
models for practical deployment in diverse parking scenar-
ios.

2. Related Work

Different methods and techniques have been proposed to
tackle the problem of detecting parking space occupancy.
Nguyen and Sartipi introduced a novel automated parking
space localization algorithm called PakLoc, complemented
by PakSke, a module that refines the orientation and dimen-
sions of the box bound. Furthermore, PakSta, an innovative
framework that uses PakLoc’s object detector that simulta-
neously monitors and detects the status of all parking spaces
within a given frame, achieves an impressive AP75 of 93.
6% in the PKLot dataset. [11].

Other detection methods used sensors for vehicle detec-
tion and surveillance. Boda and Howitt proposed design
and implementation considerations for a wireless sensor
network to track available spaces in public parking areas
in real time. [2]. The detector of the proposed system
gave an output of 168 vehicles at the end of the simulation,
while visually observing and recording a total of 171 vehi-
cles during 40 minutes of data aggregation, which resulted
in a probability of 1.8% error.

Nguyen and Vo proposed a network based on the im-
proved YOLOVS, named YOLOSPKLot, that focuses on re-
designing the backbone network with a combination of the
lightweight Ghost Bottleneck and Spatial Pyramid Pooling
architectures. In addition, these researchers customized the
head of YOLOVS by resizing the anchors and adding one
more layer of detection to improve the prediction task. [10].
This method has significantly reduced the inference time
and number of parameters used compared to YOLOv5Sm
and YOLOVS5s, with a 99.6% detection accuracy.

The widespread adoption of Unmanned Aerial Vehicles
(UAVs) has introduced significant privacy challenges con-
cerning unauthorized drone activities. To address these
concerns, Wong et al we propose a novel model, WRN-
YOLO[16], which integrates the Wide Residual Network

(WRN) architecture with YOLO.

3. Dataset

The project leverages the PKLot dataset [3], which contains
12,417 images (1280x720 pixels) in JPEG color
format, capturing various parking lots scenes, along with
695,899 segmented images of parking spaces. All images
were acquired in the parking lots of the Federal University
of Parana (UFPR) and the Pontifical Catholic University
of Parana (PUCPR), located in Curitiba, Brazil. The im-
ages capture a variety of environmental conditions, includ-
ing sunny, cloudy, and rainy weather, providing a diverse
and realistic representation of parking scenarios. The im-
ages were taken over a period of more than 30 days with a
5-minute time-lapse interval using a low-cost full HD cam-
era. The images were captured in two different parking
lots, covering different weather conditions, such as sunny,
cloudy, and rainy. The annotations of the original data set
provided in XML format have been converted to YOLOvVS8
annotation format using Roboflow [4].

In this format, each image has a text file (.txt) where each
line represents a normalized version of one parking space
annotation —binary label indicating occupancy (0/1), hori-
zontal center of the bounding box, vertical center of bound-
ing box, width of the bounding box and the height of the
bounding box - following the pattern:

(class_id, Tcenters Yeenters Width, height)

25 o whe
e e ‘
e L i CE

(g) (h))

Figure 1. Figure 1: Images captured under different weather con-
ditions: (a) sunny (b) overcast, and (c) rainy from UFPRO04; (d)
sunny (e) overcast, and (f) rainy from UFPROS5; and (g) sunny (h)
overcast, and (i) rainy from PUCPR

4. YOLOVS Architecture

YOLOVS [8] is the latest iteration of the You Only Look
Once (YOLO) family of object detection models. It was
developed and released by the Ultralytics team in Jan-
uary 2023. Traditional methods relied heavily on sliding-
window approaches. YOLO treats object detection as a
single regression problem by simultaneously predicting all

Figure 2. Segmented image: (a) 28 delimited spaces, (b) occupied
sub-image, and (c) empty sub-image.

bounding boxes in a single network pass. YOLOv8 im-
proves on its predecessor YOLOVS [7] by utilizing anchor-
free detection, which expedites nonmaximum suppression
(NMS) post-processing, a step that discards overlapping
boxes with lower confidence ratings. It also employs state-
of-the-art backbone and neck architectures, resulting in
improved feature extraction and object detection perfor-
mance. The YOLOVS series has a diverse range of mod-
els catered towards object detection, instance segmenta-
tion, image classification, pose estimation, and multi-object
tracking. It also offers various sizes, from nano-sized (n)
to x-large (x). Figure 3 by GitHub user RangeKing shows
the detailed visualization of the network’s architecture. Ul-
tralytics explicitly does not label these parts in their official
documentation, but the division is commonly accepted in
the community.

YOLOv8
Backbone

o
)

Figure 3. An overview of YOLOVS architecture

4.0.1. Backbone

The backbone is responsible for extracting features from in-
put images. YOLOVS uses a custom version of the CSP-
Darknet53 [1], which uses Cross-Stage Partial (CSP) [15]
connections to improve information flow between layers.

CSP divides the input feature map into two parts: one is pro-
cessed through a series of bottleneck layers to capture deep
semantic features, while the other is forwarded directly to
preserve low-level spatial information. This design reduces
computational complexity, enhances gradient flow while re-
ducing model size.

4.0.2. Neck

The neck serves as a bridge between the backbone and the
head. The neck is responsible for fusing the features ex-
tracted by the backbone. SPFF (Spatial Pyramid Pooling)
block at the neck provides a multi-scale representation of
the feature map. It employs a PANet (Path Aggregation
Network) [9], which combines features at different scales
from different stages of the backbone. YOLOvVS utilizes a
novel C2f module instead of the traditional Feature Pyra-
mid Network (FPN). The C2f module helps in efficient fea-
ture map refinement and helps reduce memory consump-
tion. The Convolutional layers P3, P4, and PS are transmit-
ted to various parts of the pyramid (layers 11, 14, and 20),
which allows the model to detect objects of various sizes.

4.0.3. Head

The detection head uses Dynamic Anchor Boxes and a
novel IOU loss function. The head consists of three detec-
tion heads connected to the three outputs of the PANet. [17]
These heads are responsible for generating bounding boxes,
assigning confidence scores, and classifying boxes into their
categories. The first Detect block specializes in detecting
small objects from the C2f block present in Block 15. The
second Detect block specializes in detecting medium ob-
jects from the C2f block present in Block 18. Lastly, the
third Detect block specializes in detecting small objects
from the C2f block in Block 21.

5. Methodology

This study investigates the effectiveness of different back-
bone architectures in enhancing parking space occupancy
detection using YOLOVS. The overall process involves inte-
grating alternative backbones into the YOLOv8 framework
to assess their impact on detection performance. The chosen
backbones — ResNet18, EfficientNetV2, Ghost, and VGG16
— offer diverse trade-offs in terms of depth, parameter effi-
ciency, and representational power.

5.1. Dataset Preparation

YOLOVS uses the YOLOvVS PyTorch TXT annotation for-
mat, a modified version of the Darknet annotation format.
The original images are resized to a dimension 640x640
pixels. The dataset is divided into 70% for training, 20% for
validation, and 10% for testing. During training, data was
augmented by applying random horizontal flipping, bright-
ness, HSV augmentation, image translation, image scal-

ing, blur, and some variation of mosaic augmentation from
YOLO.

5.2. YAML Configuration

YOLOVS allows model customization via a YAML config-
uration file. Ain’t Markup Language (YAML) is a human-
readable data serialization language used for storing and or-
ganizing data, especially configuration settings. The YAML
file for YOLOVS defines the model architecture by specify-
ing the layers and their configurations. When loading or
training a model, the YAML file is passed to a parser that
dynamically constructs the model’s architecture at runtime.
The YAML configuration for YOLOVS typically consists
of: number of classes (nc), scales, and the layer definitions
grouped under backbone and head. Each entry in the layer
is represented as a list in the form [from, number,
module, args]. Eachcustom backbone is implemented
as a torchvision model and plugged into the YAML file.

[None, 2, “nearest"]]

Figure 4. A sample YAML configuration of YOLOvV8n

5.3. YOLOv8n

We focus mainly on object detection with a scale variant of
nano (n). We used pre-trained weights of the YOLOS8n from
the official repository to load the model, and fine-tuned the
model on the PkLot dataset. YOLOSn is treated as the base
model.

5.4. YOLO-ResNet-18

ResNet-18 is a convolutional neural network from the
ResNet [6] family. ResNet-18 is one of the shallower ver-
sions of ResNet, consisting of 18 layers, including convo-
lutional layers and residual blocks. A residual block allows
inputs to bypass one or more layers via shortcut connec-
tions, called skip connections. Residual connections help
avoid vanishing gradients for deeper networks. A typical
residual block, as shown in Figure 5, consists of two convo-
lutional layers with batch normalization, ReLU activation,
and a skip connection. ResNet18 consists of an initial 7X7
convolution layer followed by a MaxPooling layer. This is

followed by four stages of residual blocks. Finally, the out-
put is passed through an average pooling layer followed by
a fully connected layer for the final classification output.

identity

Figure 5. Residual Block in ResNet18

We replaced the default YOLOv8 backbone with
ResNet18 having pre-trained weights from the
torchvision.models library. A custom YAML file
yolov8n-resnetl8.yaml with ResNetl8 config-
uration was created. We extracted feature maps from
intermediate layers - Layers 6, 7, and 8 of ResNetl8-
that correspond to spatial resolutions of 1/8 (P3), 1/16
(P4), and 1/32 (P5) of the input image. These layers were
selected using the Index module in YOLO’s config to map
to internal blocks of ResNet18. An SPPF (Spatial Pyramid
Pooling — Fast) module was applied to the deepest output to
enhance the receptive field and capture multi-scale context.
The final detection head makes predictions from fused
feature maps of Layers 10, 13, and 16. A YOLO was then
initialized with the YAML file and trained.

5.5. YOLO-EfficientNetV2

EfficientNetV2 [13] is part of the EfficientNet family of
convolutional neural networks introduced by Tan and Le,
designed to optimize both accuracy and training speed.
Unlike traditional architectures, EfficientNetV2 combines
MBConv and Fused-MBConv blocks to improve param-
eter efficiency, convergence speed, and representational
power. These blocks use depthwise separable convolu-
tions, squeeze-and-excitation (SE) modules, and shortcut
connections to reduce computation while retaining expres-
sive capacity. A typical EfficientNetV2 architecture begins
with a stem convolution followed by a series of progres-
sively deeper stages, each composed of multiple MBConv
or Fused-MBConv blocks. These stages extract features
at increasing levels of abstraction. Unlike ResNet, which
uses uniform residual blocks, EfficientNetV2 dynamically
chooses block types and expansion ratios per stage, guided
by neural architecture search.

We replaced the default YOLOv8 backbone with
EfficientNetV2-S, having pre-trained weights from
the torchvision.models library. A custom YAML file
yolov8n-efficientv2.yaml with EfficientNetV2-S

configuration was created. We extracted feature maps from
intermediate layers - Layers 4, 6, and 8 of EfficientNetV2-
S- that correspond to spatial resolutions of 1/8 (P3), 1/16
(P4), and 1/32 (P5) of the input image. These layers were
selected using the Index module in YOLO’s config to map
to internal blocks of EfficientNetV2. An SPPF module
was applied to the deepest output to enhance the receptive
field and capture multi-scale context. The neck and head
were modified to match the feature shapes of the Efficient-
NetV2 outputs. As in YOLO-ResNet18, the final detection
head takes fused outputs from the PANet-style neck at three
scales from Layers 10, 13, and 16 and predicts bounding
boxes, objectness scores, and class labels. A YOLO model
was then initialized with the YAML file and trained.

HW,C “ HW,C “
Convlxl Convlxl
SE SE

HWAC T HWAC T
depthwise
conv3x3
4 Conv3x3
Convlxl
HW.C } HW.C }
MBConv Fused-MBConv

Figure 6. Structure of MBConv and Fused-MBConv

5.6. YOLO-VGG-16

The VGG-16 architecture, proposed by Simonyan and Zis-
serman [12], represents a significant improvement over ear-
lier convolutional neural networks (ConvNets) by increas-
ing network depth through the addition of multiple convo-
lutional layers, all employing small 3x3 kernel filters.

The VGG-16 architecture is characterized by its sim-
plicity, comprising a stack of convolutional layers followed
by max-pooling layers. Each convolutional layer utilizes a
very small 3x3 receptive field with 1-pixel spatial padding
to preserve spatial dimensions after performing convolu-
tion. Five max-pooling layers, applied after selected con-
volutional layers, perform spatial downsampling over a 2x2
window with a stride of 2. The use of 3x3 kernels sig-
nificantly reduces the number of parameters compared to
larger kernels (e.g., 7x7), while incorporating multiple non-
linear rectification layers (ReLU) enhances the discrimina-
tive power of the decision function compared to architec-
tures with fewer non-linearities.

To enhance the feature extraction capabilities of
YOLOVS for object detection, we replaced its default back-
bone with the VGG-16 architecture, while utilizing the
VGG-16 pretrained weights from the torchvision.models
library. A custom YAML file yolov8n-vgglé6.yaml
was created to integrate specific VGG-16 layers into the

YOLOVS framework, replacing the original backbone.
Specifically, we extracted feature maps from VGG-16 lay-
ers 23, 30, and 31, corresponding to spatial resolutions of
1/8 (P3), 1/16 (P4), and 1/32 (P5). These layers were se-
lected using the Index module in YOLO’s config to map
to internal blocks of VGG-16. An SPPF module was ap-
plied to the deepest output to enhance the receptive field and
capture multi-scale context. The final detection head takes
fused outputs from the PANet-style neck at three scales
from Layers 10, 13, and 16 and predicts bounding boxes,
objectness scores, and class labels. A YOLO model was
then initialized with the custom YAML file and trained.

5.7. YOLO-Ghost-P2

YOLOV8-Ghost-P2 is a lightweight variant of the YOLOv8
model family. Specifically, Ghost-P2 utilizes GhostConv
layers to replace the original Conv, which significantly re-
duces the number of parameters to compute while main-
taining an efficient way of generating more features. Ghost
Module, originally proposed by Noah’s Ark Lab and
Huawei Technologies, tackles the issue of high parameters
and FLOPS induced by normal convolution. Initially, the
input tensors go through the ordinary convolutional opera-
tion to obtain a smaller size of intrinsic feature maps Y.

Specifically, m intrinsic feature maps Y’ € RM xw'xm
are generated using a primary convolution:

Y =Xxf

where f/ € REXFXEX™ are the learned filters, m’ is the
number of output channels, m < n and the bias term is
omitted for simplicity. A cheap linear operation @ is applied
on these intrinsic feature maps to produce an additional
ghost (similar pairs) feature maps. [5]. The final output
of the Ghost Module stacks the intrinsic feature maps with
their corresponding ghosts, producing a total of n = m x s
feature maps, where s is the number of ghost feature maps
generated for each original feature. This approach ensures
that the output maintains the necessary spatial dimensions
while reducing computational complexity.

6. Evaluation Metrics

To evaluate the effectiveness of our models, we employ dis-
tinct performance metrics.

6.1. Intersection of Union (I0U)

IOU is a metric that quantifies the degree of overlap
between two regions, as shown in Figure 8. The value
ranges from O to 1. IoU evaluates the localization accuracy
of detected bounding boxes by measuring their overlap
with ground-truth annotations. It is defined as:

_AnB]

ToU =
Y T lauB

(1

Conv

Input Output

(a) The convolutional layer.

Identity

o’

Conv

Input Qutput

(b) The Ghost module.

Figure 7. An illustration of a convolutional layer and the Ghost
module operation for outputting the same number of feature maps

Figure 8. Truth and Predicted Bounding Box

6.2. Mean Average Precision

To evaluate detection performance, we adopt the standard
mean Average Precision (mAP) metrics, which are based
on the Precision-Recall (PR) curve. For a given class c, the
Average Precision (AP) is defined as the area under the PR
curve:

1
AP, :/ pe(r)dr 2)
0

where p.(r) denotes the precision as a function of re-
call r. In practical implementations, this integral is approx-
imated over discrete recall thresholds.

The mean Average Precision (mAP) across all C classes
is computed as:

mAP = & Z AP, 3)

For localization accuracy, AP is typically calculated at
various Intersection-over-Union (IoU) thresholds.

The metric mAP@50 corresponds to an IoU threshold
of 0.5. To provide a more comprehensive evaluation, the
mAP@50:95 metric averages AP over 10 IoU thresholds

Term Description

TP Correctly identified occupied spaces
TN Correctly identified empty spaces

FP predicted an empty space as occupied
FN predicted an occupied space as empty

Table 1. Prediction Outcomes.

from 0.50 to 0.95 with a step size of 0.05. This gives a
more rigorous evaluation across a range of IoU thresholds.

Prediction
Positive Negative
3
— % TP FN
g £
©
< 2
s FP TN
z

Figure 9. Actual vs Prediction

6.3. Precision

It measures the proportion of correctly predicted occupied
spaces out of all spaces predicted as occupied. A higher pre-
cision value indicates fewer false positives. FP, FN, TP, and
TN stand for False Positive, False Negative, True Positive,
and True Negative Negative, respectively. These statistics
are defined in the 2 X 2 confusion matrix as shown in Fig-
ure 9 and explained in Table 1.

TP
Precision = ———— 4
recision TP FP 4)

6.4. Recall

It measures the proportion of correctly predicted occupied
spaces out of all actual occupied spaces. A higher recall
indicates fewer false negatives.

TP
Precision = ———— (@)

TP+ FN
7. Experiment and Results

7.1. Experimental Setup

All experiments were conducted using an NVIDIA A100-
SXM4-40GB GPU hosted in a CUDA 12.4 environment
with driver version 550.54.15 and Pytorch 2.6. Ultralytics
YOLOVS was used for all YOLO models. The GPU offered
ample compute capability (sm_80) and 40 GB of VRAM,

Table 2. Training configuration and hyperparameters

Parameter Value

Input Size 640 x 640

Epochs 20

Optimizer AdamW (auto-selected)
Initial Learning Rate 0.001667 (auto-tuned)
Momentum 0.9 (auto-tuned)

Weight Decay 0.0005 (for conv weights)
Bias Decay 0.0

Other Weight Decay 0.0

Batch Size 16

Dataloader Workers 2

Logging Directory runs/detect/train

which allowed for efficient training of multiple YOLOvV8
variants with large batch sizes and high-resolution inputs.
Some experiments were conducted using an NVIDIA Tesla
T4 GPU to reduce GPU compute cost.

All YOLO variants were trained and evaluated under
identical conditions to allow for fair comparison. Table 2
highlights the parameters used during training YOLO vari-
ants on the PkLot dataset. Empty slots are labeled as e and
occupied slots are labeled as o sometimes.

7.2. Results

All YOLO variants were evaluated on the PkLot dataset us-
ing the metrics described in Section 6. The standard metrics
are shown in Table 2. Additionally, we report model com-
plexity in terms of parameter count, number of layers, and
inference speed, which are shown in Table 4.

All models achieved high precision and recall, but sub-
tle differences emerge when comparing stricter metrics
like mAP50:95. YOLO-EfficientNetv2 achieved the best
overall detection performance, with the highest mAP50:95
(0.986) and excellent precision (0 . 998), while maintain-
ing a moderate computational cost (56.4 GFLOPs) and
lower inference time (4 .1 ms). YOLO-ResNet-18 offered
a strong balance, matching the mAP50 score (0. 994) and
achieving strong precision (0 . 998) with slightly lower lo-
calization accuracy (mAP50:95 =0.976).

YOLO-VGGI16, while achieving high precision
(0.998), showed a slightly lower recall (0.985) and
mAP50:95 (0.985), and was the most computationally
expensive model (262.1 GFLOPs), despite a moderate
inference time (3.3 ms), making it less suitable for
lightweight deployment. YOLOv8n maintained competi-
tive precision and recall (both 0.996) and fast inference
(0.9 ms), demonstrating its suitability for real-time
applications with minimal compute. = YOLO-Ghost-P2
achieved the fastest inference (1.5 ms) among custom
modifications with the lowest parameter count (1 . 6M), but

Table 3. Comparison of YOLO Variants on PKLot Dataset

Model Precision Recall mAP50 mAP50:95
YOLOv8n 0.996 0.996 0.994 0.97
YOLO-ResNet-18 0.998 0.997 0.994 0.976
YOLO-VGGI16 0.998 0.985 0.991 0.985
YOLO- 0.998 0.997 0.994 0.986
EfficientNet

YOLO-Ghost-P2 0.968 0.978 0.991 0.896

Table 4. Extended Comparison of YOLO Variants

Model Params Layers Inference GFLOPs
(M) (ms)

YOLOv8n 3.01 129 0.9 8.2

YOLO-ResNet-18 13.32 132 9 35.2

YOLO-VGG16 17.78 113 33 262.1

YOLO- 23.40 564 4.1 56.4

EfficientNet

YOLO-Ghost-P2 1.60 290 1.5 8.8

its slightly lower recall (0.978) and mAP50:95 (0.896)
suggest a higher likelihood of missed detections.

Overall, models like YOLO-VGG16 and EfficientNet
excel in detection accuracy, while YOLOv8n and Ghost-
P2 are better suited for edge applications where inference
speed and model size are critical. Precision-recall trade-
offs highlight the need to match model choice with the de-
ployment scenario’s tolerance for false positives and missed
detections.

7.3. Visualization

7.3.1. Plots

To better understand the training behavior of each YOLO
variant, we present key performance metrics plotted over
training epochs. Figures 10, 11, 12, 14 show comparisons
of each YOLO variants under box loss, class loss, mAP50,
and mAP50:95. YOLOv8n and YOLO-Ghost-P2 showed
the fastest drop in loss, attributed to their lightweight ar-
chitectures, while YOLO-EfficientNet and YOLO-VGG16
required more epochs to stabilize due to deeper networks.
Other plots are readily available in the code repository.

8. Conclusion

In this work, we investigated the impact of integrat-
ing custom backbone architectures into the YOLOVS
framework using the PKLot dataset. We evaluated five
models—YOLOv8n, YOLO-ResNet18, YOLO-VGGI6,
YOLO-EfficientNet, and YOLO-Ghost-P2—across accu-
racy and efficiency metrics. Our results show that YOLO-
EfficientNet achieved the best overall detection perfor-

Train Box Loss over Epochs

307 — YoLoven
YOLO-ResNet18
254 —— YOLO-EfficientNet
—— YOLO-VGG16
—— YOLO-Ghost-P2

Train Box Loss
v
o o

g
=)

=4
@

0.0 25 5.0 75 10.0 125 15.0 17.5
Epoch

Figure 10. Train Box Loss- YOLO variants

Train Classification Loss over Epochs

3.0
—— YOLOv8n

YOLO-ResNet18
—— YOLO-EfficientNet
—— YOLO-VGG16
—— YOLO-Ghost-P2

~
n

N
)

e
©

Train Classification Loss
-
n

[o4
n

0.0 25 5.0 75 10.0 125 15.0 17.5
Epoch

Figure 11. Train Classification Loss- YOLO variants

mMAP@0.5 over Epochs

—— YoLOvsn
YOLO-ResNet18
0.75 4 —— YOLO-EfficientNet
—— YOLO-VGG16
0.70 4 —— YOLO-Ghost-P2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

Figure 12. mAp@50- YOLO variants

mAP@0.5:0.95 over Epochs

mMAP@0.5:0.95

—— YOLovan
YOLO-ResNet18
—— YOLO-EfficientNet
—— YOLO-VGG16
—— YOLO-Ghost-P2

0.0 25 5.0 7.5 10.0 125 15.0 17.5
Epoch

Figure 13. mAp@50:95- YOLO variants

mance, combining high precision, recall, and localization
accuracy with reasonable computational cost. These find-

Validation Box Loss over Epochs

1817 — YoLOv8n
YOLO-ResNet18
—— YOLO-EfficientNet
144 —— YOLO-VGG16
—— YOLO-Ghost-P2

Validation Box Loss
P
o

0.0 25 5.0 75 10.0 125 15.0 17.5
Epoch

Figure 14. Validation Box Loss - YOLO variants

ings highlight the importance of backbone selection in
adapting object detection models to specific application
constraints. All code, training logs, and model configura-
tions and weights are available at: YOLOv8-PkLot

9. Challenges

We faced some significant challenges throughout the
project. Initial efforts of local installation of PyTorch Cuda,
NVIDIA CUDA Toolkit, and cuDNN slowed down our ex-
perimental setup. As a result, we switched over to a cloud-
hosted compute, Google Colab Pro environment for our
needs. Customizing YOLOv8 with different backbones sig-
nificantly increases the computational demand for model
training. This also required manual adjustments to feature
map shapes and channel dimensions to ensure compatibility
with the neck and head. Due to limited compute resources,
we also fell behind on proper model configurations and hy-
perparameter tuning. The PkLot dataset, while diverse, in-
cludes fixed camera angles and limited parking lot types.

10. Future Work

To build upon our current YOLOVS customization efforts,
future work will involve exploring deeper backbone archi-
tectures, such as ResNet50, Vision Transformers (ViT), and
Swin Transformer, to further improve detection accuracy.
Incorporating additional modalities such as temporal data
(video sequences), depth information could improve robust-
ness. The integration of MobileNet architectures could also
be helpful when deploying to edge devices for real-time de-
tection on embedded systems (e.g. Jetson Nano or Xavier).

11. Acknowledgments

We would like to thank the open-source community for
their existing work on custom YOLO modifications across
various domains. We also extend our sincere gratitude to
Dr. Diego Patifio, Dr. Alex Dillhoff, and a few CSE doc-
toral students for their guidance and feedback, which helped
shape the direction and depth of this project.

References

(1]

(2]

(3]

(4]

(3]

(6]
(7]
(8]
(9]

(10]

(11]

(12]

[13]

(14]

[15]

(16]

(17]

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-
Yuan Mark Liao. Yolov4: Optimal speed and accuracy of
object detection, 2020. 2

V.K. Boda, Asis Nasipuri, and Ivan Howitt. Design consid-
erations for a wireless sensor network for locating parking
spaces. pages 698 — 703, 2007. 1

Paulo R.L. de Almeida, Luiz S. Oliveira, Alceu S. Britto, Eu-
nelson J. Silva, and Alessandro L. Koerich. Pklot — a robust
dataset for parking lot classification. Expert Systems with
Applications, 42(11):4937-4949, 2015. 2

B. Dwyer, J. Nelson, T. Hansen, et al. Roboflow (Version
1.0), 2024. Computer vision software. 2

Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu,
and Chang Xu. Ghostnet: More features from cheap opera-
tions, 2020. 5

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 3
Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics
yolovs, 2020. 2

Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics
yolovg, 2023. 2

Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia.
Path aggregation network for instance segmentation, 2018. 3
Duy-Linh Nguyen, Xuan-Thuy Vo, Adri Priadana, and
Kang-Hyun Jo. YoloSpklot: A parking lot detection network
based on improved yolov5 for smart parking management
system. 2023. 1

Tuan T. Nguyen and Mina Sartipi. Smart camera parking
system with auto parking spot detection, 2024. |

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition, 2015. 4
Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller mod-
els and faster training, 2021. 4

Rejin Varghese and Sambath M. Yolov8: A novel object
detection algorithm with enhanced performance and robust-
ness. In 2024 International Conference on Advances in Data
Engineering and Intelligent Computing Systems (ADICS),
2024. 1

Chien-Yao Wang, Hong-Yuan Mark Liao, I-Hau Yeh, Yueh-
Hua Wu, Ping-Yang Chen, and Jun-Wei Hsieh. Cspnet: A
new backbone that can enhance learning capability of cnn,
2019. 2

Yi Jie Wong, Wingates Voon, Mau-Luen Tham, Ban-Hoe
Kwan, Yoong Choon Chang, and Yan Chai Hum. Wrn-yolo:
An improved yolo for drone detection using wide resnet.
In 2025 International Joint Conference on Neural Networks
(IJCNN), 2025. 1

Muhammad Yaseen. What is yolov8: An in-depth explo-
ration of the internal features of the next-generation object
detector, 2024. 3

https://github.com/pokhrelapar/yolov8-pklot

	Introduction
	Related Work
	Dataset
	YOLOv8 Architecture
	Backbone
	Neck
	Head

	Methodology
	Dataset Preparation
	YAML Configuration
	YOLOv8n
	YOLO-ResNet-18
	YOLO-EfficientNetV2
	YOLO-VGG-16
	YOLO-Ghost-P2

	Evaluation Metrics
	Intersection of Union (IOU)
	Mean Average Precision
	Precision
	Recall

	Experiment and Results
	Experimental Setup
	Results
	Visualization
	Plots

	Conclusion
	Challenges
	Future Work
	Acknowledgments

